‹-- Назад

Уравнение поверхности

В школе изучались уравнения линий на плоскости. В пространстве мы будем пользоваться уравнениями поверхностей и линий. Уточним сейчас, что такое уравнение поверхности.

        Определение 11.1   Пусть в пространстве задана некоторая система координат и поверхность $ S$ . Будем говорить, что уравнение, связывающее три упорядоченные переменные, является уравнением поверхности $ S$ в заданной системе координат, если координаты любой точки поверхности $ S$ удовлетворяют этому уравнению, а координаты любой точки, не лежащей на поверхности $ S$ , этому уравнению не удовлетворяют.         

Вместо слов "координаты точки удовлетворяют уравнению" иногда будем говорить "точка удовлетворяет уравнению".

Если мы изменим систему координат, то, как правило, изменится и уравнение поверхности.

Если уравнение достаточно сложное, то удовлетворяющие ему точки могут образовывать не только поверхность, но и другие множества, например, линию, одну точку, пару линий. Есть такие уравнения, которым не удовлетворяет ни одна точка пространства. Например, ни одна точка с координатами $ (x;y;z)$ не удовлетворяет уравнению $ {x^2+y^2+z^2=-1}$ .

В определении сказано, что уравнение должно связывать три переменных, но по записи уравнения не всегда можно определить, сколько переменных оно связывает. Например, уравнение $ x+y=0$ можно рассматривать как уравнение прямой на плоскости, но можно это же уравнение записать в виде $ x+y+0\cdot z=0$ , и тогда оно будет определять поверхность в пространстве (плоскость, как станет известно дальше). Поэтому кроме самого уравнения должна быть задана информация о том, в пространстве какой размерности находится определяемое этим уравнением множество точек.

Одна и та же поверхность может задаваться разными уравнениями. Например, если в уравнении поверхности $ S$ в правой части стоит нуль: $ {F(x,y,z)=0}$ , то обе части уравнения можно возвести в квадрат и получить $ {(F(x,y,z))^2=0}$ . Новое уравнение будет являться уравнением той же самой поверхности $ S$ , хотя будет выглядеть по другому. Естественно, что когда говорят об уравнении поверхности, то из всех уравнений этой поверхности стараются выбрать наиболее "простое".